TECHNICAL PROTOCOL
FOR
Eukaryotic recombinase expression vector

pCAGGS-FLPo (A203)
pCAGGS-Cre (A204)
pCAGGd-Dre (A205)
CONTENTS

1 Eppendorf tubes + manual

1. recombinase expression plasmid pCAGGS-FLPo, pCAGGS-Cre or pCAGGS-Dre (0.2 µg/µl, 20 µl)

2. This manual

Store tube at -20°C.

Please read

The products listed in this manual are for research purposes only. They are not designed for diagnostic or therapeutic use in humans, animals or plants.

MTA

The use of FLPo is covered by United States Patent Application Serial Number 12/307,418 owned by Fred Hutchinson Cancer Research Center (“FHCRC”), Seattle, Washington. Non-profit and academic institutions have permission to use the plasmid solely for research purpose; for-profit entities require a license from FHCRC.

The use of Dre recombinase is covered by United States Patent Nos. 7,422,889 and 7,915,037 owned by the Stowers Institute for Medical Research, Kansas City, Missouri. Non-profit and academic institutions have permission to use the plasmid solely for research purpose; for-profit entities require a license from Stowers Institute.

Conditions of use

3.1 Purchaser will not manufacture, copy, reproduce, transmit, distribute, sell, lease, transfer, or improve upon the MATERIALS without prior written consent from GENE BRIDGES.

3.2 All MATERIALS relating Technologies shall be purchased from GENE BRIDGES or its authorized distributors. Use of any of the stated products from a source other than GENE BRIDGES will exempt GENE BRIDGES from any and all liabilities and warranties.

3.3 All MATERIALS purchased by research organizations, universities and other non-profit organizations may not be used for any commercial purpose. These MATERIALS are to be used for research purposes only. The MATERIALS may not be used to provide a commercial or non-commercial service, of any kind.

3.4 A purchase of MATERIALS by a private consumer is neither intended nor permitted.
Short Description:

Site-specific recombinases (SSRs) like Cre, FLP or Dre are valuable tools in functional genomics and have been applied in various organisms. They mediate recombination between target sites of 32-34 base pairs (bp) in length. The target sites, which are called loxP, FRT or rox sites are 13-14 bp palindromes separated by spacers (s. below).

loxP

5-ATAACTTCGTATAATGTATGCTATACGAAGTTAT-3

rox

5-ATACTTTAAATAATGCCAATTATTATTAAAGTTA-3

FRT

5-GAAGTTCTATTTCTCTAGAAAGTATAGGAACCTTC-3

Recognition sites of the site-specific recombinases Cre, Dre and FLP.

Cre recombinase, which was originally isolated from coliphage P1, mediates recombination between two loxP-sites through the spacer regions. Dre was identified in a systematic search through P1-like phages for a Cre-like enzyme that had diverged sufficiently to recognize a recombination target site (RT) that is distinct from loxP (Sauer and Mc Dermott, 2004). The Dre RT was termed rox. The codon usage of Dre in the plasmid was adapted for the use in mammalian cells (Anastassiadis K. et al., 2009).

FLP recombinase was originally isolated from yeast and therefore shows a significantly reduced activity at 37°C due to thermal instability of the protein (Buchholz F. et al., 1996). A screen for thermo-stable mutants resulted in the identification of an enhanced FLP version (FLPe), which exhibits a 4-10 fold higher activity at 37°C (Buchholz F., Angrand P.O. and Stewart A.F. 1998). FLPe is a codon-optimized FLP version first described by Christopher Raymond and Philippe Soriano (2007). Its amino acid sequence is identical to that of FLPe but the codon usage was altered to improve expression in mammalian cells. It appears to be at least 10 fold more efficient than FLPe (Kranz A. et al., 2010).
Our pCAGGS expression vectors carry FLPo/ Cre/ Dre under the control of the chicken-β-actin promoter and an hCMV immediate early enhancer. The use of the chimeric CMV enhancer/β-actin promoter leads to a ubiquitous expression profile in eukaryotes. The addition of a Sv40 Large T nuclear localization sequence (nls) further improves the performance in mammalian cells (Schaft J. et al., 2001). The recombinases are linked to a puromycin resistance gene by an internal ribosomal entry site (IRES).

The pCAGGS-FLPo plasmid allows efficient excision of DNA stretches flanked by FRT sites; the pCAGGS-Cre plasmid allows excision of DNA stretches flanked by loxP sites and the pCAGGS-Dre plasmid allows excision of DNA stretches flanked byrox sites, such as a resistance cassette in a conditional allele in eukaryotic cells (see Kranz A. et al., 2010 for further details). The plasmids carry a puromycin resistance gene for selection in eukaryotic cells and an ampicillin resistance cassette for selection in E. coli.
pCAGGS-Cre/pCAGGS-Dre/pCAGGS-FLPo

Maps:

pCAGGS-FLPo
(7675 bp)

 bla (ampR)

CAG promoter

ColE1 origin of replication

pA

puroR

IRES

pCAGGS-Cre
(7411 bp)

 bla (ampR)

CAG promoter

ColE1 origin of replication

pA

puroR

IRES

Cre

pCAGGS-Dre
(7495 bp)

 bla (ampR)

CAG promoter

ColE1 origin of replication

pA

puroR

IRES

Dre
Literature: