

TECHNICAL PROTOCOL

FOR

Arabinose inducible prokaryotic recombinase expression plasmid

pSC101-BAD-Cre (A301) pSC101-BAD-Dre (A302)

Gene Bridges GmbH Im Neuenheimer Feld 584 69120 Heidelberg, Germany Tel + 49 (0)6221 13708 11 Fax + 49 (0)6221 13708 29 Email: contact@genebridges.com www.genebridges.com

CONTENTS

1 Eppendorf tubes + manual

- 1. recombinase expression plasmid pSC101-BAD-Cre or pSC101-BAD-Dre (0.2 μg/μl, 20 μl)
- 2. This manual

Store tube at -20℃

Please read

The products listed in this manual are for research purposes only. They are not designed for diagnostic or therapeutic use in humans, animals or plants.

MTA

The use of Dre recombinase is covered by United States Patent Nos. 7,422,889 and 7,915,037 owned by the Stowers Institute for Medical Research, Kansas City, Missouri. Non-profit and academic institutions have permission to use the plasmid solely for research purpose; for-profit entities require a license from Stowers Institute.

Conditions of use

- 3.1 Purchaser will not manufacture, copy, reproduce, transmit, distribute, sell, lease, transfer, or improve upon the MATERIALS without prior written consent from GENE BRIDGES.
- 3.2 All MATERIALS relating Technologies shall be purchased from GENE BRIDGES or its authorized distributors. Use of any of the stated products from a source other than GENE BRIDGES will exempt GENE BRIDGES from any and all liabilities and warranties.
- 3.3 All MATERIALS purchased by research organizations, universities and other non-profit organizations may not be used for any commercial purpose. These MATERIALS are to be used for research purposes only. The MATERIALS may not be used to provide a commercial or non-commercial service, of any kind.
- 3.4 A purchase of MATERIALS by a private consumer is neither intended nor permitted.

Version 1.0 (01.05.2013)

Short Description:

Site-specific recombinases (SSRs) like Cre or Dre are valuable tools in functional genomics and have been applied in various organisms. They mediate recombination between target sites of 32-34 base pairs (bp) in length. The target sites, which are called loxP or rox sites are 13-14 bp palindromes separated by spacers (s. below).

Recognition sites of the site-specific recombinases Cre and Dre.

Cre recombinase, which was originally isolated from coliphage P1, mediates recombination between two loxP-sites through the spacer regions (e.g. removal of selectable genes). Dre was identified in a systematic search through P1-like phages for a Cre-like enzyme that had diverged sufficiently to recognize a recombination target site (RT) that is distinct from loxP (Sauer and Mc Dermott, 2004).

The combination of the arabinose inducible BAD promoter and the low-copy pSC101 plasmid backbone provide an excellent on-off regulation of Cre or Dre in *E. coli* as proved in a test experiment (Anastassiadis et al. 2009).

The plasmids carry a tetracyclin resistance gene for selection and are compatible with plasmids based on a CoIE1 or p15A origin of replication and an ampicillin or kanamycin resistance marker.

While Cre/loxP is widely used in mouse genetics for conditional mutagenesis with many mouse lines available, a second highly efficient system like Dre/rox opens the door for more complex tasks such as a conditional mutagenesis of alternatively spliced exons. Cre/loxP can be used to remove one alternative exon and Dre/rox to remove the other one.

Version 1.0 (01.05.2013)

Literature:

- Anastassiadis K., Fu J., Patsch C., Hu S., Weidlich S., Duerschke K., Buchholz F., Edenhofer F. and Stewart A.F. 2009: Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Disease Models & Mechanisms 2: 508 - 515.
- Sauer B. and Mc Dermott J., 2004: DNA recombination with a heterospecific Cre homolog identified from comparison of the *pac-c1* regions of P1-related phages. Nucleic Acids Research 32: 6086 – 6095.

Maps:

Version 1.0 (01.05.2013)